Red light therapy is the use of visible light emitted from low-energy lasers with the goal of stimulating cellular processes. Red light is just one type of visible light on the electromagnetic spectrum (Figure 1). In addition to visible light, the electromagnetic spectrum includes radiowaves, microwaves, infrared (IR), ultraviolet (UV), X-ray, and gamma rays. The implementation of light sources as a form of therapy is sometimes called photobiomodulation, and it aims to promote healing, regenerative, and/or restorative function on target cells and tissues.

i International Commission on Non-Ionizing Radiation Protection (ICNIRP) (2020). Light-Emitting Diodes (LEDS): Implications for Safety. Health physics, 118(5), 549–561. https://doi.org/10.1097/HP.0000000000001259

ii International Commission on Non-Ionizing Radiation Protection (ICNIRP) (2020). Light-Emitting Diodes (LEDS): Implications for Safety. Health physics, 118(5), 549–561. https://doi.org/10.1097/HP.0000000000001259

iii International Commission on Non-Ionizing Radiation Protection (ICNIRP) (2020). Light-Emitting Diodes (LEDS): Implications for Safety. Health physics, 118(5), 549–561. https://doi.org/10.1097/HP.0000000000001259

iv Glass, G. E. (2021). Photobiomodulation: A review of the molecular evidence for low level light therapy. Journal of Plastic, Reconstructive & Aesthetic Surgery, 74(5), 1050–1060. https://doi.org/10.1016/j.bjps.2020.12.059

v Karu T. (1989). Photobiology of low-power laser effects. Health physics, 56(5), 691–704. https://doi.org/10.1097/00004032-198905000-00015

vi Karu, T. I. (2008). Mitochondrial Signaling in Mammalian Cells Activated by Red and Near-IR Radiation. Photochemistry and Photobiology, 84(5), 1091–1099. https://doi.org/10.1111/j.1751-1097.2008.00394.x

vii Karu, T. I. (2008). Mitochondrial Signaling in Mammalian Cells Activated by Red and Near-IR Radiation. Photochemistry and Photobiology, 84(5), 1091–1099. https://doi.org/10.1111/j.1751-1097.2008.00394.x

viii Karu, T. I. (1989). Photobiology of Low-power Laser Effects. Health Physics, 56(5), 691–704. https://doi.org/10.1097/00004032-198905000-00015

ix Lehtinen, K., Nokia, M. S., & Takala, H. (2022). Red Light Optogenetics in Neuroscience. Frontiers in Cellular Neuroscience, 15. https://doi.org/10.3389/fncel.2021.778900

x Huang, Y., Chen, A., Carroll, J. D., & Hamblin, M. R. (2009). Biphasic Dose Response in Low Level Light Therapy. Dose-Response, 7(4), dose-response.0. https://doi.org/10.2203/dose-response.09-027.hamblin  

xi Desmet, K. D., et al. (2006). Clinical and experimental applications of NIR-LED photobiomodulation. Photomedicine and laser surgery, 24(2), 121–128. https://doi.org/10.1089/pho.2006.24.121

xii Keszler, Á., Lindemer, B., Weihrauch, D., Jones, D. W., Hogg, N., & Lohr, N. L. (2017). Red/near infrared light stimulates release of an endothelium dependent vasodilator and rescues vascular dysfunction in a diabetes model. Free Radical Biology and Medicine, 113, 157–164. https://doi.org/10.1016/j.freeradbiomed.2017.09.012

xiii DeSmet, K. D., Paz, D., Corry, J. J., Eells, J. T., Margaret T.T. Wong‐Riley, Henry, M. M., Buchmann, E., Connelly, M. P., Dovi, J. V., Liang, H., Henshel, D. S., Yeager, R. L., Millsap, D. S., Lim, J., Gould, L., Das, R., Jett, M., Hodgson, B. D., Margolis, D., & Whelan, H. T. (2006). Clinical and Experimental Applications of NIR-LED Photobiomodulation. Photomedicine and Laser Surgery, 24(2), 121–128. https://doi.org/10.1089/pho.2006.24.121

xiv Keszler, Á., Lindemer, B., Weihrauch, D., Jones, D. W., Hogg, N., & Lohr, N. L. (2017). Red/near infrared light stimulates release of an endothelium dependent vasodilator and rescues vascular dysfunction in a diabetes model. Free Radical Biology and Medicine, 113, 157–164. https://doi.org/10.1016/j.freeradbiomed.2017.09.012

xv Karu, T. I. (2008). Mitochondrial Signaling in Mammalian Cells Activated by Red and Near-IR Radiation. Photochemistry and Photobiology, 84(5), 1091–1099. https://doi.org/10.1111/j.1751-1097.2008.00394.x

xvi Lajos Pikó, & Matsumoto, L. (1976). Number of mitochondria and some properties of mitochondrial DNA in the mouse egg. Developmental Biology, 49(1), 1–10. https://doi.org/10.1016/0012-1606(76)90253-0

xvii Adhikari, D., et al. (2022). Oocyte mitochondria—key regulators of oocyte function and potential therapeutic targets for improving fertility. Biology of Reproduction, 106(2), 366–377. https://doi.org/10.1093/biolre/ioac024

xviii Friderun Ankel‐Simons, & Cummins, J. (1996). Misconceptions about mitochondria and mammalian fertilization: Implications for theories on human evolution. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13859–13863.  

xvix Friderun Ankel‐Simons, & Cummins, J. (1996). Misconceptions about mitochondria and mammalian fertilization: Implications for theories on human evolution. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13859–13863. https://doi.org/10.1073/pnas.93.24.13859

xx Adhikari, D., et al. (2022). Oocyte mitochondria—key regulators of oocyte function and potential therapeutic targets for improving fertility. Biology of Reproduction, 106(2), 366–377. https://doi.org/10.1093/biolre/ioac024

xxi Friderun Ankel‐Simons, & Cummins, J. (1996). Misconceptions about mitochondria and mammalian fertilization: Implications for theories on human evolution. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13859–13863. https://doi.org/10.1073/pnas.93.24.13859

xxii Karu, T. I., et al. (2005). Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers in Surgery and Medicine, 36(4), 307–314. https://doi.org/10.1002/lsm.20148

xxiii Stepanov, Y. V., et al. (2022). Red and near infrared light-stimulated angiogenesis mediated via Ca2+ influx, VEGF production and NO synthesis in endothelial cells in macrophage or malignant environments. Journal of Photochemistry and Photobiology B-Biology, 227, 112388–112388. https://doi.org/10.1016/j.jphotobiol.2022.112388  

xxiv Ruder, E. H., et al. (2009). Impact of oxidative stress on female fertility. Current Opinion in Obstetrics & Gynecology, 21(3), 219–222. https://doi.org/10.1097/gco.0b013e32832924ba  

xxv Bisht, S. F., et al. (2017). Oxidative stress and male infertility. Nature Reviews Urology, 14(8), 470–485. https://doi.org/10.1038/nrurol.2017.69

xxvi Hamblin, M. R. (2016). Shining light on the head: Photobiomodulation for brain disorders. BBA Clinical, 6, 113–124. https://doi.org/10.1016/j.bbacli.2016.09.002  

xxvii Karu, T. I. (2008). Mitochondrial Signaling in Mammalian Cells Activated by Red and Near-IR Radiation. Photochemistry and Photobiology, 84(5), 1091–1099. https://doi.org/10.1111/j.1751-1097.2008.00394.x  

xxviii Hirata, S., et al. (2002). Review Spermatozoon and mitochondrial DNA Spermatozoon and mitochondrial DNA. Reproductive Medicine and Biology, 1, 41–47. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5904680/pdf/RMB2-1-41.pdf  

xxix Moskvin, S. V., & Apolikhin, O. I. (2018). Effectiveness of low level laser therapy for treating male infertility. BioMedicine, 8(2), 7. https://doi.org/10.1051/bmdcn/2018080207  

xxx Preece, D., et al. (2017). Red light improves spermatozoa motility and does not induce oxidative DNA damage. Scientific Reports, 7(1). https://doi.org/10.1038/srep46480

xxxi Eghbaldoost, A., et al. (2023). Therapeutic Effects of Low-Level Laser on Male Infertility: A Systematic Review. Journal of Lasers in Medical Sciences, 14, e36–e36. https://doi.org/10.34172/jlms.2023.36

xxxii Sato, H., M., et al. (2009). The Effects of Laser Light on Sperm Motility and Velocity in vitro. Andrologia, 16(1), 23–25. https://doi.org/10.1111/j.1439-0272.1984.tb00229.x

xxxiii Preece, D., et al. (2017). Red light improves spermatozoa motility and does not induce oxidative DNA damage. Scientific Reports, 7(1). https://doi.org/10.1038/srep46480

xxxiv Preece, D., et al. (2017). Red light improves spermatozoa motility and does not induce oxidative DNA damage. Scientific Reports, 7(1). https://doi.org/10.1038/srep46480

xxxv Yazdi, R. S., et al. (2013). Effect of 830-nm diode laser irradiation on human sperm motility. Lasers in Medical Science, 29(1), 97–104. https://doi.org/10.1007/s10103-013-1276-7

xxxvi Yazdi, R. S., et al. (2013). Effect of 830-nm diode laser irradiation on human sperm motility. Lasers in Medical Science, 29(1), 97–104. https://doi.org/10.1007/s10103-013-1276-7  

xxxvi Ziaeipour, S., et al. (2023). Photobiomodulation therapy reverses spermatogenesis arrest in hyperthermia-induced azoospermia mouse model. Lasers in Medical Science, 38(1). https://doi.org/10.1007/s10103-023-03780-8

xxxvii Ziaeipour, S., et al. (2023). Photobiomodulation therapy reverses spermatogenesis arrest in hyperthermia-induced azoospermia mouse model. Lasers in Medical Science, 38(1). https://doi.org/10.1007/s10103-023-03780-8

xxxix Hasan, P., et al. (2004). THE POSSIBLE APPLICATION OF LOW REACTIVE-LEVEL LASER THERAPY (LLLT) IN THE TREATMENT OF MALE INFERTILITY: A preliminary report. LASER THERAPY, 14(0_Pilot_Issue_2), 0_65–0_66. https://doi.org/10.5978/islsm.14.0_65

xl Hasan, P., et al. (2004). THE POSSIBLE APPLICATION OF LOW REACTIVE-LEVEL LASER THERAPY (LLLT) IN THE TREATMENT OF MALE INFERTILITY: A preliminary report. LASER THERAPY, 14(0_Pilot_Issue_2), 0_65–0_66. https://doi.org/10.5978/islsm.14.0_65

xli Hasan, P., et al. (2004). THE POSSIBLE APPLICATION OF LOW REACTIVE-LEVEL LASER THERAPY (LLLT) IN THE TREATMENT OF MALE INFERTILITY: A preliminary report. LASER THERAPY, 14(0_Pilot_Issue_2), 0_65–0_66. https://doi.org/10.5978/islsm.14.0_65

xlii Effectiveness of low level laser therapy for treating male infertility | Semantic Scholar. (2018). Semanticscholar.org; https://www.semanticscholar.org/reader/ff35581212d9e9db35d5451056a741e472b9d45f

xliii Female age-related fertility decline. (2014). Fertility and Sterility, 101(3), 633–634. https://doi.org/10.1016/j.fertnstert.2013.12.032

xliv Reza, A., et al. (2021). Oocyte quality and aging. JBRA Assisted Reproduction. https://doi.org/10.5935/1518-0557.20210026

xlv Reza, A., et al. (2021). Oocyte quality and aging. JBRA Assisted Reproduction. https://doi.org/10.5935/1518-0557.20210026

xlvi Kitagawa, T., Suganuma, N., Nawa, A., Fumitaka Kikkawa, Tanaka, M., Ozawa, T., & Tsutsumi, Y. (1993). Rapid Accumulation of Deleted Mitochondrial Deoxyribonucleic Acid in Postmenopausal Ovaries. Biology of Reproduction, 49(4), 730–736. https://doi.org/10.1095/biolreprod49.4.730

xlvii Robert P.S. Jansen, & K de Boer. (1998). The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Molecular and Cellular Endocrinology, 145(1-2), 81–88. https://doi.org/10.1016/s0303-7207(98)00173-7

xlviii Wang L, Tang J, Wang L, et al. Oxidative stress in oocyte aging and female reproduction. J Cell Physiol. 2021;236(12):7966-7983. doi:10.1002/jcp.30468

xlix May-Panloup P, Boucret L, Chao de la Barca JM, et al. Ovarian ageing: the role of mitochondria in oocytes and follicles. Hum Reprod Update. 2016;22(6):725-743. doi:10.1093/humupd/dmw028

l Female age-related fertility decline. (2014). Fertility and Sterility, 101(3), 633–634. https://doi.org/10.1016/j.fertnstert.2013.12.032

li Adhikari, D., et al. (2022). Oocyte mitochondria—key regulators of oocyte function and potential therapeutic targets for improving fertility. Biology of Reproduction, 106(2), 366–377. https://doi.org/10.1093/biolre/ioac024

lii Friderun Ankel‐Simons, & Cummins, J. (1996). Misconceptions about mitochondria and mammalian fertilization: Implications for theories on human evolution. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13859–13863. https://doi.org/10.1073/pnas.93.24.13859

liii Lajos Pikó, & Matsumoto, L. (1976). Number of mitochondria and some properties of mitochondrial DNA in the mouse egg. Developmental Biology, 49(1), 1–10. https://doi.org/10.1016/0012-1606(76)90253-0

liv Taniguchi, Y., Ohshiro, T., Ohshiro, T., & Sasaki, K. (2010). ANALYSIS OF THE CURATIVE EFFECT OF GaAlAs DIODE LASER THERAPY IN FEMALE INFERTILITY. LASER THERAPY, 19(4), 257–261. https://doi.org/10.5978/islsm.19.257

lv Taniguchi, Y., Ohshiro, T., Ohshiro, T., & Sasaki, K. (2010). ANALYSIS OF THE CURATIVE EFFECT OF GaAlAs DIODE LASER THERAPY IN FEMALE INFERTILITY. LASER THERAPY, 19(4), 257–261. https://doi.org/10.5978/islsm.19.257

lvi Taniguchi, Y., Ohshiro, T., Ohshiro, T., & Sasaki, K. (2010). ANALYSIS OF THE CURATIVE EFFECT OF GaAlAs DIODE LASER THERAPY IN FEMALE INFERTILITY. LASER THERAPY, 19(4), 257–261. https://doi.org/10.5978/islsm.19.257

lvii Sahraeian, S., et al. (2023). Extracellular Vesicle-Derived Cord Blood Plasma and Photobiomodulation Therapy Down-Regulated Caspase 3, LC3 and Beclin 1 Markers in the PCOS Oocyte: An In Vitro Study. Journal of lasers in medical sciences, 14, e23. https://doi.org/10.34172/jlms.2023.23

lviii Sahraeian, S., et al. (2023). Extracellular Vesicle-Derived Cord Blood Plasma and Photobiomodulation Therapy Down-Regulated Caspase 3, LC3 and Beclin 1 Markers in the PCOS Oocyte: An In Vitro Study. Journal of lasers in medical sciences, 14, e23. https://doi.org/10.34172/jlms.2023.23

lix Sahraeian, S., et al. (2023). Extracellular Vesicle-Derived Cord Blood Plasma and Photobiomodulation Therapy Down-Regulated Caspase 3, LC3 and Beclin 1 Markers in the PCOS Oocyte: An In Vitro Study. Journal of lasers in medical sciences, 14, e23. https://doi.org/10.34172/jlms.2023.23

lx Eduardo, A. D., et al. (2019). Photobiomodulation can improve ovarian activity in polycystic ovary syndrome-induced rats. Journal of Photochemistry and Photobiology B-Biology, 194, 6–13. https://doi.org/10.1016/j.jphotobiol.2019.03.006

lxi Richter, K. S., et al. (2007). Relationship between endometrial thickness and embryo implantation, based on 1,294 cycles of in vitro fertilization with transfer of two blastocyst-stage embryos. Fertility and Sterility, 87(1), 53–59. https://doi.org/10.1016/j.fertnstert.2006.05.064

lxii El, A., et al. (2018). Has the time come to include low-level laser photobiomodulation as an adjuvant therapy in the treatment of impaired endometrial receptivity? Lasers in Medical Science, 33(5), 1105–1114. https://doi.org/10.1007/s10103-018-2476-y

lxiii Glass G. E. (2023). Photobiomodulation: A Systematic Review of the Oncologic Safety of Low-Level Light Therapy for Aesthetic Skin Rejuvenation. Aesthetic surgery journal, 43(5), NP357–NP371. https://doi.org/10.1093/asj/sjad018

lxiv Ferraz, M., et al. (2022). Low-intensity LASER and LED (photobiomodulation therapy) for pain control of the most common musculoskeletal conditions. European Journal of Physical and Rehabilitation Medicine, 58(2). https://doi.org/10.23736/s1973-9087.21.07236-1

lxv Glass, G. E. (2023). Photobiomodulation: A Systematic Review of the Oncologic Safety of Low-Level Light Therapy for Aesthetic Skin Rejuvenation. Aesthetic Surgery Journal, 43(5), NP357–NP371. https://doi.org/10.1093/asj/sjad018

lxvi Wang, C., et al. (1997). Effect of increased scrotal temperature on sperm production in normal men. Fertility and Sterility, 68(2), 334–339. https://doi.org/10.1016/s0015-0282(97)81525-7

lxvii Cohen, N., et al. (1998). Light irradiation of mouse spermatozoa: stimulation of in vitro fertilization and calcium signals. Photochemistry and photobiology, 68(3), 407–413.

lxviii Preece, D., et al. (2017). Red light improves spermatozoa motility and does not induce oxidative DNA damage. Scientific Reports, 7(1). https://doi.org/10.1038/srep46480

lxix Sahraeian, S., et al. (2023). Extracellular Vesicle-Derived Cord Blood Plasma and Photobiomodulation Therapy Down-Regulated Caspase 3, LC3 and Beclin 1 Markers in the PCOS Oocyte: An In Vitro Study. Journal of lasers in medical sciences, 14, e23. https://doi.org/10.34172/jlms.2023.23

lxx El, A., et al. (2018). Has the time come to include low-level laser photobiomodulation as an adjuvant therapy in the treatment of impaired endometrial receptivity? Lasers in Medical Science, 33(5), 1105–1114. https://doi.org/10.1007/s10103-018-2476-y

lxxi El, A., et al. (2018). Has the time come to include low-level laser photobiomodulation as an adjuvant therapy in the treatment of impaired endometrial receptivity? Lasers in Medical Science, 33(5), 1105–1114. https://doi.org/10.1007/s10103-018-2476-y

lxxii Morin, S. J., et al. (2017). Laser acupuncture before and after embryo transfer improves in vitro fertilization outcomes: A four-armed randomized controlled trial. Medical Acupuncture, 29(2), 56–65. https://doi.org/10.1089/acu.2017.1218

lxxiii Fratterelli, J. L., et al. (2008). Laser acupuncture before and after embryo transfer improves ART delivery rates: results of a prospective randomized double-blinded placebo controlled five-armed trial involving 1000 patients. Fertility and Sterility, 90, S105–S105. https://doi.org/10.1016/j.fertnstert.2008.07.1252

lxxiv Morin, S. J., et al. (2017). Laser acupuncture before and after embryo transfer improves in vitro fertilization outcomes: A four-armed randomized controlled trial. Medical Acupuncture, 29(2), 56–65. https://doi.org/10.1089/acu.2017.1218

lxxv Morin, S. J., et al. (2017). Laser acupuncture before and after embryo transfer improves in vitro fertilization outcomes: A four-armed randomized controlled trial. Medical Acupuncture, 29(2), 56–65. https://doi.org/10.1089/acu.2017.1218  

lxxvi Taniguchi, Y., et al. (2010). Analysis of the curative effect of GaAlAs diode laser therapy in female infertility. Laser Therapy, 19(4), 257–261. https://doi.org/10.5978/islsm.19.257  

lxxvii Phypers, R. (2022, October). Best light for fertility - red and infrared light therapy. Laser Medicine London. https://www.lasermedicine.co.uk/best-light-for-fertility/

lxxviii Karu, T. I., et al. (2005). Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers in Surgery and Medicine, 36(4), 307–314. https://doi.org/10.1002/lsm.20148

lxxix Keszler, Á.,et al. (2017). Red/near infrared light stimulates release of an endothelium dependent vasodilator and rescues vascular dysfunction in a diabetes model. Free Radical Biology and Medicine, 113, 157–164. https://doi.org/10.1016/j.freeradbiomed.2017.09.012https://doi.org/10.1016/j.freeradbiomed.2017.09.012

lxxx Griswold M. D. (2016). Spermatogenesis: The Commitment to Meiosis. Physiological reviews, 96(1), 1–17. https://doi.org/10.1152/physrev.00013.2015